已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;

已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(2)证明函数y=f(x)(x≠1)的图象在直线l... 已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(2)证明函数y=f(x)(x≠1)的图象在直线l的下方;(3)若函数y=f(x)有零点,求实数a的取值范围. 展开
 我来答
黑丝配小高EX9
2015-01-31 · 超过62用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:126万
展开全部
(1)f′(x)=
1
x
?a
…(2分)f(1)=-a+1,kl=f'(1)=1-a,
所以切线l的方程为y-f(1)=kl(x-1),即y=(1-a)x.…(4分)
(2)令F(x)=f(x)-(1-a)x=lnx-x+1,x>0,
F′(x)=
1
x
?1 =
1
x
(1?x) ,解F′(x)=0得x=1

x (0,1) 1 (1,+∞)
F'(x) + 0 -
F(x) 最大值
F(1)<0,所以?x>0且x≠1,F(x)<0,f(x)<(1-a)x,
即函数y=f(x)(x≠1)的图象在直线l的下方.      …(9分)
(3)y=f(x)有零点,即f(x)=lnx-ax+1=0有解,a=
lnx+1
x

令 g(x)=
lnx+1
x
g′(x)=(
lnx+1
x
)′=
1?(lnx+1)
x2
=?
lnx
x2

解g'(x)=0得x=1.…(11分)
则g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
当x=1时,g(x)的最大值为g(1)=1,
所以a≤1.…(13分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式