如图,△ABC是⊙O的内接三角形,直径HF交AC于D,HF、BC的延长线交于点E.(1)若HF⊥AB,求证:∠OAD=∠E
如图,△ABC是⊙O的内接三角形,直径HF交AC于D,HF、BC的延长线交于点E.(1)若HF⊥AB,求证:∠OAD=∠E;(2)若A点是下半圆上一动点,当点A运动到什么...
如图,△ABC是⊙O的内接三角形,直径HF交AC于D,HF、BC的延长线交于点E.(1)若HF⊥AB,求证:∠OAD=∠E;(2)若A点是下半圆上一动点,当点A运动到什么位置时,△CDE的外心在△CDE一边上?请简述理由.
展开
1个回答
展开全部
解:(1)证明:连接OB,
∵HF⊥AB,
∴
=
,
∴∠AOH=∠ACB=
∠AOB,
∵∠AOD+∠AOH=180°,∠ECD+∠ACB=180°,
∴∠AOD=∠ECD,
∵∠ODA=∠CDE,
∴∠OAD=∠E;
(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.
理由:①当AB是直径时,△CDE的外心在△CDE一边上.
∵AB是直径,
∴∠ACB=90°,
∴∠DCE=90°,
即△CDE是直角三角形,
∴△CDE的外心在△CDE边DE上;
②当A运动到使AC⊥HF时,△CDE是直角三角形.
此时△CDE的外心在△CDE边CE上.
综上两种情况下,当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.
∵HF⊥AB,
∴
BH |
AH |
∴∠AOH=∠ACB=
1 |
2 |
∵∠AOD+∠AOH=180°,∠ECD+∠ACB=180°,
∴∠AOD=∠ECD,
∵∠ODA=∠CDE,
∴∠OAD=∠E;
(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.
理由:①当AB是直径时,△CDE的外心在△CDE一边上.
∵AB是直径,
∴∠ACB=90°,
∴∠DCE=90°,
即△CDE是直角三角形,
∴△CDE的外心在△CDE边DE上;
②当A运动到使AC⊥HF时,△CDE是直角三角形.
此时△CDE的外心在△CDE边CE上.
综上两种情况下,当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询