在△ABC中,AB=AC,∠BAC=α,点D是BC上一动点(不与B、C重合),将线段AD绕点A逆时针旋转α后到达AE位置

在△ABC中,AB=AC,∠BAC=α,点D是BC上一动点(不与B、C重合),将线段AD绕点A逆时针旋转α后到达AE位置,连接DE、CE,设∠BCE=β.(1)如图1,若... 在△ABC中,AB=AC,∠BAC=α,点D是BC上一动点(不与B、C重合),将线段AD绕点A逆时针旋转α后到达AE位置,连接DE、CE,设∠BCE=β.(1)如图1,若α=90°,求β的大小;(2)如图2,当点D在线段BC上运动时,试探究α与β之间的数量关系?并对你的结论给出证明;(3)当点D在线段BC的反向延长线上运动时,(2)中的结论是否仍然成立?若成立,试加以证明,若不成立,试找出α与β之间的新关系,并说明理由. 展开
 我来答
下茨回粉号049
2014-08-14 · TA获得超过189个赞
知道答主
回答量:139
采纳率:80%
帮助的人:63.3万
展开全部
(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°.
∵∠DAB=α-∠DAC,∠EAC=α-∠DAC,
∴∠EAC=∠DAB.
又AB=AC,AD=AE,
∴△DAB≌△EAC.
∴∠ECA=∠B=45°.
∴β=∠ACB+ECA=90°.

(2)α+β=180°.
证明:∵∠BAC=∠DAE=α,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
又AB=AC,AD=AE,
∴△ABD≌△ACE.
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β.
∵α+∠B+∠ACB=180°,
∴α+β=180°.

(3)当点D在线段BC的反向延长线上运动时,(2)中的结论不能成立,此时:α=β成立.
其理由如下:
类似(2)可证∴△DAB≌△ECA,
∴∠DBA=∠ECA,
又由三角形外角性质有∠DBA=α+∠DCA,
而∠ACE=β+∠DCA,
∴α=β.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式