(2013?静安区二模)如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x
(2013?静安区二模)如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点...
(2013?静安区二模)如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点.(1)求反比例函数和二次函数的解析式;(2)如果点D在x轴的正半轴上,点E在反比例函数的图象上,四边形ACDE是平行四边形,求边CD的长.
展开
展开全部
(1)设反比例函数的解析式为y=
,
∵点A(2,6)在反比例函数的图象上,
∴6=
,
∴k=12,
∴反比例函数的解析式为y=
,
作AM⊥BC,垂足为M,交x轴于N,
∴CM=2.
在Rt△ACM中,AM=CM?tan∠ACB=2×2=4,
∵BC∥x轴,OC=MN=AN-AM=6-4=2,
∴点C的坐标(0,2).
当x=2时,y=6,
∴点B的坐标(6,2)
设二次函数的解析式为y=ax2+bx+2,
则
,
解得
,
故二次函数的解析式为y=?
x2+3x+2;
(2)延长AC交x轴于G,作EH⊥x轴,垂足为H,
∵在平行四边形ACDE中,AC∥DE,
∴∠AGO=∠EDH,
∵BC∥x轴,
∴∠ACM=∠AGO,
∴∠ACM=∠EDH.
在△ACM和△EDH中
∴△ACM≌△EDH,
∴EH=AM=4,DH=CM=2.
∵E点纵坐标为4,点E在反比例函数y=
k |
x |
∵点A(2,6)在反比例函数的图象上,
∴6=
k |
2 |
∴k=12,
∴反比例函数的解析式为y=
12 |
x |
作AM⊥BC,垂足为M,交x轴于N,
∴CM=2.
在Rt△ACM中,AM=CM?tan∠ACB=2×2=4,
∵BC∥x轴,OC=MN=AN-AM=6-4=2,
∴点C的坐标(0,2).
当x=2时,y=6,
∴点B的坐标(6,2)
设二次函数的解析式为y=ax2+bx+2,
则
|
解得
|
故二次函数的解析式为y=?
1 |
2 |
(2)延长AC交x轴于G,作EH⊥x轴,垂足为H,
∵在平行四边形ACDE中,AC∥DE,
∴∠AGO=∠EDH,
∵BC∥x轴,
∴∠ACM=∠AGO,
∴∠ACM=∠EDH.
在△ACM和△EDH中
|
∴△ACM≌△EDH,
∴EH=AM=4,DH=CM=2.
∵E点纵坐标为4,点E在反比例函数y=
1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|