已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC
已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC....
已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.
展开
展开全部
证明:过点C作CF⊥AC交AD的延长线于F
∵∠BAC=90,AB=AC
∴∠ABC=∠ACB=45,∠ABM+∠AMB=90
∵AD⊥BM
∴∠CAF+∠AMB=90
∴∠CAF=∠ABM
∵CF⊥AC
∴∠ACF=∠BAC=90
∴△ABM≌△CAF (ASA)
∴∠F=∠AMB.AM=CF
∵M是AC的中点
∴CM=AM
∴CM=CF
∵∠FCD=∠ACF-∠ACB=90-45=45
∴∠FCD=∠ACB
∵CD=CD
∴△CFD≌△CMD (SAS)
∴∠F=∠CMD
∴∠AMB=∠CMD
∵∠BAC=90,AB=AC
∴∠ABC=∠ACB=45,∠ABM+∠AMB=90
∵AD⊥BM
∴∠CAF+∠AMB=90
∴∠CAF=∠ABM
∵CF⊥AC
∴∠ACF=∠BAC=90
∴△ABM≌△CAF (ASA)
∴∠F=∠AMB.AM=CF
∵M是AC的中点
∴CM=AM
∴CM=CF
∵∠FCD=∠ACF-∠ACB=90-45=45
∴∠FCD=∠ACB
∵CD=CD
∴△CFD≌△CMD (SAS)
∴∠F=∠CMD
∴∠AMB=∠CMD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询