求过点(1,3,-2)和直线x+y+z+1=0 2x-y+3z+4=0的平面方程
3个回答
展开全部
在直线上找出两点(比如和坐标平面的交点):
y+z=-1
-y+3z=-4
=>
z=-5/4
、y=1/4
=>
M(0,1/4,-5/4)
x+y=-1
2x-y=-4
=>
x=-5/3、y=2/3
=>
N(-5/3,2/3,0)
则平面过三点:P(1,3,-2)、M(0,1/4,-5/4)、N(-5/3,2/3,0)
所以,平面方程
|x-1
y-3
z+2|
0-1
1/4-3
-5/4+2
=0
-5/3-1
2/3-3
0+2
=>
3x+4z+5=0
为所求
。
y+z=-1
-y+3z=-4
=>
z=-5/4
、y=1/4
=>
M(0,1/4,-5/4)
x+y=-1
2x-y=-4
=>
x=-5/3、y=2/3
=>
N(-5/3,2/3,0)
则平面过三点:P(1,3,-2)、M(0,1/4,-5/4)、N(-5/3,2/3,0)
所以,平面方程
|x-1
y-3
z+2|
0-1
1/4-3
-5/4+2
=0
-5/3-1
2/3-3
0+2
=>
3x+4z+5=0
为所求
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在直线上找出两点(比如和坐标平面的交点):
y+z=-1
-y+3z=-4 => z=-5/4 、y=1/4 => M(0,1/4,-5/4)
x+y=-1
2x-y=-4 => x=-5/3、y=2/3 => N(-5/3,2/3,0)
则平面过三点:P(1,3,-2)、M(0,1/4,-5/4)、N(-5/3,2/3,0)
所以,平面方程 |x-1 y-3 z+2|
0-1 1/4-3 -5/4+2 =0
-5/3-1 2/3-3 0+2
=> 3x+4z+5=0 为所求 。
y+z=-1
-y+3z=-4 => z=-5/4 、y=1/4 => M(0,1/4,-5/4)
x+y=-1
2x-y=-4 => x=-5/3、y=2/3 => N(-5/3,2/3,0)
则平面过三点:P(1,3,-2)、M(0,1/4,-5/4)、N(-5/3,2/3,0)
所以,平面方程 |x-1 y-3 z+2|
0-1 1/4-3 -5/4+2 =0
-5/3-1 2/3-3 0+2
=> 3x+4z+5=0 为所求 。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询