求函数y=2-4/3sinx–cosx的最大值和最小值
2个回答
展开全部
依题知:
y=2-(4/3)sinx–cosx (x∈R)
作初步化解得到:
y=2-((3/4)sinx+cosx)
分析之,括号内的部分不能使用特殊角解决,所以利用辅助角公式,引入角度φ。
可以得到:
y=2-√((3/4)²+1²)sin(x+φ) (tanφ=sinφ/cosφ=4/3)
y=2-(5/4)sin(x+φ)
当x+φ=2kπ+3π/2时(k∈Z),即x=2kπ+3π/2-φ时,最大值ymax=2+5/4=13/4。
当x+φ=2kπ+π/2时(k∈Z),即x=2kπ+π/2-φ时,最小值ymin=2-5/4=3/4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询