高阶常系数齐次线性微分方程数三考不考
3个回答
展开全部
特征方程本身就是一个一元方程.
高阶常系数齐次线性微分方程的特征方程是一个一元高次方程.
这里的特征方程一定能够得到与特征方程的次数相同个数的解.
对于一元一次和一元二次方程可以根据固定的公式得到它们的解.
但对于三次或者更高次的方程来说,尽管三次的也有求根公式,但是已经相当的麻烦了.因此只能根据自己的经验来求.
拿你的例子来说,可以直接将左边因式分解得到(r+i)(r-i)(r+1)(r-1)=0
从而得到该方程的四个特征根±1,±i
从而得到该方程的四个线性无关解e^x, e^(-x), cosx, sinx
因此原方程的通解为y=C1e^x+C2e^(-x)+C3cosx+C4sinx, 其中C1,C2,C3,C4为任意常数.
高阶常系数齐次线性微分方程的特征方程是一个一元高次方程.
这里的特征方程一定能够得到与特征方程的次数相同个数的解.
对于一元一次和一元二次方程可以根据固定的公式得到它们的解.
但对于三次或者更高次的方程来说,尽管三次的也有求根公式,但是已经相当的麻烦了.因此只能根据自己的经验来求.
拿你的例子来说,可以直接将左边因式分解得到(r+i)(r-i)(r+1)(r-1)=0
从而得到该方程的四个特征根±1,±i
从而得到该方程的四个线性无关解e^x, e^(-x), cosx, sinx
因此原方程的通解为y=C1e^x+C2e^(-x)+C3cosx+C4sinx, 其中C1,C2,C3,C4为任意常数.
展开全部
探讨了避开复值解定理求解常系 数线性微分方程的方法.施变换y=ze ̄rx于方程y(n)+α1y(n-1)+…+αny=0,则新方程的特征方程为 (λ+r)n+α1(λ+r)n-1+…+αn=0.指出了如特征方程分解为(λl+p1λl-1+…+Pl)(λk+q1λk-1+…+qk)=0,, 则其对应的方程可以写成复合微分方程[z(k)+q1z(k-1)+…+qkz]l+p1[z(k)+q1z(k-1)+…+qkz] (l-1)+…+pl[z(k)+q1z(k-1)+…qkz]=0.通过把方程写成复合微分方程和转化为非齐次方程,用待定系数法研究了齐次方程的通解 结构.在齐次方程通解理论的基础上,通过引进新方程、将其写成复合微分方程和转化为非齐次方程与所给的方程比较,导出非齐次方程的特解设置.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数三只考到二阶齐次常系数线性微分方程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |