
函数f(x)=x³+3ax²+3(a+2)x+1有极大值和极小值,则实数a的取值范围
1个回答
展开全部
f(x)=x³+3ax²+3(a+2)x+1
则:
f'(x)=3x²+6ax+3(a+2)
由于函数f(x)既有极大值又有极小值,则:
方程f'(x)=0有两个不等实根,则:
△=(6a)²-36(a+2)>0
a²-a-2>0
得:
a>2或a<-1
则:
f'(x)=3x²+6ax+3(a+2)
由于函数f(x)既有极大值又有极小值,则:
方程f'(x)=0有两个不等实根,则:
△=(6a)²-36(a+2)>0
a²-a-2>0
得:
a>2或a<-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询