求下列曲线绕指定轴旋转一周所围成的旋转体的体积
请大神把(1)(2)的解法详细写出来,谢谢。 展开
采用定积分方法,先求出微体积,再做定积分。
1、绕x轴旋转时,微体积 dV = πy^2dx,或者:dV = π(sinx)^2dx,将dV在0到π之间对x做定积分,得到:V = ∫π(sinx)^2dx (在0到π区间积分) = ∫π(1-cos2x)/2dx (在0到π区间积分) = 0.5π^2。即,给定函数,绕x轴旋转得到的旋转体体积为 0.5π^2
2、绕y轴旋转时,微体积 dV = π(2x)ydx,或者:dV = 2πxsinxdx,将dV在0到π之间对x做定积分,得到:V = ∫ 2πxsinxdx(在0到π区间积分) =2π ∫xsinxdx (在0到π区间积分) = 2π^2。即,给定函数,绕y轴旋转得到的旋转体体积为 2π^2
扩展资料:
分类
1、不定积分(Indefinite integral)
即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。
所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
参考资料:定积分-百度百科
1、绕x轴旋转时,微体积 dV = πy^2dx,或者:dV = π(sinx)^2dx,将dV在0到π之间对x做定积分,得到:V = ∫π(sinx)^2dx (在0到π区间积分) = ∫π(1-cos2x)/2dx (在0到π区间积分) = 0.5π^2。即,给定函数,绕x轴旋转得到的旋转体体积为 0.5π^2
2、绕y轴旋转时,微体积 dV = π(2x)ydx,或者:dV = 2πxsinxdx,将dV在0到π之间对x做定积分,得到:V = ∫ 2πxsinxdx(在0到π区间积分) =2π ∫xsinxdx (在0到π区间积分) = 2π^2。即,给定函数,绕y轴旋转得到的旋转体体积为 2π^2
扩展资料:
分类
1、不定积分(Indefinite integral)
即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。
所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
主要采用定积分方法吧,先求出微体积,再做定积分就可以了。
1、绕x轴旋转时,微体积 dV = πy^2dx,或者:dV = π(sinx)^2dx,将dV在0到π之间对x做定积分,得到:V = ∫π(sinx)^2dx (在0到π区间积分) = ∫π(1-cos2x)/2dx (在0到π区间积分) = 0.5π^2。即,给定函数,绕x轴旋转得到的旋转体体积为 0.5π^2;
2、绕y轴旋转时,微体积 dV = π(2x)ydx,或者:dV = 2πxsinxdx,将dV在0到π之间对x做定积分,得到:V = ∫ 2πxsinxdx(在0到π区间积分) =2π ∫xsinxdx (在0到π区间积分) = 2π^2。即,给定函数,绕y轴旋转得到的旋转体体积为 2π^2;追问可是y=sinx,y=0确定的不是一条直线吗?直线绕x轴或y轴旋转可以得到旋转体吗?追答是的,在任意一点,y=sinx是一条竖直线条,相当于旋转半径。当x再增加一点点,相当于微小的变化,而此时的y近似认为不变,就会构成一个微小的圆柱体(这相当于微分啊)。随后,将这些微小的圆柱体,在规定的区间积分,就可以得到整个的旋转体体积了
1、绕x轴旋转时,微体积 dV = πy^2dx,或者:dV = π(sinx)^2dx,将dV在0到π之间对x做定积分,得到:V = ∫π(sinx)^2dx (在0到π区间积分) = ∫π(1-cos2x)/2dx (在0到π区间积分) = 0.5π^2。即,给定函数,绕x轴旋转得到的旋转体体积为 0.5π^2;
2、绕y轴旋转时,微体积 dV = π(2x)ydx,或者:dV = 2πxsinxdx,将dV在0到π之间对x做定积分,得到:V = ∫ 2πxsinxdx(在0到π区间积分) =2π ∫xsinxdx (在0到π区间积分) = 2π^2。即,给定函数,绕y轴旋转得到的旋转体体积为 2π^2;
可是y=sinx,y=0确定的不是一条直线吗?直线绕x轴或y轴旋转可以得到旋转体吗?
是的,在任意一点,y=sinx是一条竖直线条,相当于旋转半径。当x再增加一点点,相当于微小的变化,而此时的y近似认为不变,就会构成一个微小的圆柱体(这相当于微分啊)。随后,将这些微小的圆柱体,在规定的区间积分,就可以得到整个的旋转体体积了。