如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA的中点分别为
9个回答
展开全部
连结AC、BD.
∵ PQ为△ABC的中位线,
∴ PQ =1/2AC.
同理 MN=1/2AC.
∴ MN=PQ,MN//PQ
∴ 四边形PQMN为平行四边形.
在△AEC和△DEB中,
AE=DE,EC=EB,∠AED=60°=∠CEB,
即 ∠AEC=∠DEB.
∴ △AEC≌△DEB.
∴ AC=BD.
∴ PQ=1/2AC=1/2BD=PN.
∴ 四边形PQMN为菱形.
O(∩_∩)O哈哈~自己理解一下啊,我有事所以写得不详细,请原谅噢
∵ PQ为△ABC的中位线,
∴ PQ =1/2AC.
同理 MN=1/2AC.
∴ MN=PQ,MN//PQ
∴ 四边形PQMN为平行四边形.
在△AEC和△DEB中,
AE=DE,EC=EB,∠AED=60°=∠CEB,
即 ∠AEC=∠DEB.
∴ △AEC≌△DEB.
∴ AC=BD.
∴ PQ=1/2AC=1/2BD=PN.
∴ 四边形PQMN为菱形.
O(∩_∩)O哈哈~自己理解一下啊,我有事所以写得不详细,请原谅噢
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-11-26
展开全部
是菱形 MN=EQ EN=QM 这不需要我解释了吧 只要证明EN=NM就可以了 因为是等边三角形 所以AB=AD 又因为AB=DC 所以EN=NM(可以用全等来证明) 综上所述 PQMN为菱形 希望可以帮助你解决问题 仅当参考
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:四边形PQMN是菱形
证明:连接AC、BD、NQ、MP
∵△DAE和△CEM都是等边三角形
∴ AE=DE CE=EB ∠CEB=∠DEA=60°
∴∠DEB=∠AEC=120°
在△AEC和△DEB中
AE=DE
∠AEC=∠DEB
EC=EB
∴△ACE≌△DBE
∴DB=AC
∵N、M是DA、DC的中点
∴NM∥AC MN=1/2AC
同理
PQ∥AC PQ=1/2AC
NP∥DB NP=1/2DB
MQ∥DB MQ=1/2DB
∴MN=MQ=QP=NP
∴四边形PQMN是菱形
证明:连接AC、BD、NQ、MP
∵△DAE和△CEM都是等边三角形
∴ AE=DE CE=EB ∠CEB=∠DEA=60°
∴∠DEB=∠AEC=120°
在△AEC和△DEB中
AE=DE
∠AEC=∠DEB
EC=EB
∴△ACE≌△DBE
∴DB=AC
∵N、M是DA、DC的中点
∴NM∥AC MN=1/2AC
同理
PQ∥AC PQ=1/2AC
NP∥DB NP=1/2DB
MQ∥DB MQ=1/2DB
∴MN=MQ=QP=NP
∴四边形PQMN是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:连接BD、AC;
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB;
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=1/2AC,
同理可证得:NP=1/2DB,QP=1/2AC,MQ=1/2BD,
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
我的百分百对滴哦
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB;
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=1/2AC,
同理可证得:NP=1/2DB,QP=1/2AC,MQ=1/2BD,
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
我的百分百对滴哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询