二次型正交变换为标准型的详细步骤,就是怎么求f,图片是例子,求大神详解!
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励10(财富值+成长值)+提问者悬赏30(财富值+成长值)
展开全部
大数学家欧拉曾提出一个问题:即从不同的6个军团各选6种不同军阶的6名军官共36人,排成一个6行6列的方队,使得各行各列的6名军官恰好来自不同的军团而且军阶各不相同,应如何排这个方队?如果用(1,1)表示来自第一个军团具有第一种军阶的军官,用(1,2)表示来自第一个军团具有第二种军阶的军官,用(6,6)表示来自第六个军团具有第六种军阶的军官,则欧拉的问题就是如何将这36个数对排成方阵,使得每行每列的数无论从第一个数看还是从第二个数看,都恰好是由1、2、3、4、5、6组成。历史上称这个问题为三十六军官问题。
三十六军官问题提出后,很长一段时间没有得到解决,直到20世纪初才被证明这样的方队是排不起来的。
三十六军官问题的一般形式是:从不同的n个军团各选n种不同军阶的n名军官共n^2人,排成一个n行n列的方队,使得各行各列的n名军官恰好来自不同的军团而且军阶各不相同,应如何排这个方队?而相应的满足条件的方队被称为n阶正交拉丁方。欧拉曾猜测:对任何非负整数t,n=4t+2阶欧拉方都不存在。t=1时,这就是三十六军官问题,而t=2时,n=10,也就是百军官问题,数学家们构造出了10阶欧拉方,这说明欧拉猜想不对。但到1960年,数学家们彻底解决了这个问题,证明了n=4t+2(t≥2)阶欧拉方都是存在的,除了四军官和三十六军官外,这样的方队都是排得起来的。
希望我能帮助你解疑释惑。
三十六军官问题提出后,很长一段时间没有得到解决,直到20世纪初才被证明这样的方队是排不起来的。
三十六军官问题的一般形式是:从不同的n个军团各选n种不同军阶的n名军官共n^2人,排成一个n行n列的方队,使得各行各列的n名军官恰好来自不同的军团而且军阶各不相同,应如何排这个方队?而相应的满足条件的方队被称为n阶正交拉丁方。欧拉曾猜测:对任何非负整数t,n=4t+2阶欧拉方都不存在。t=1时,这就是三十六军官问题,而t=2时,n=10,也就是百军官问题,数学家们构造出了10阶欧拉方,这说明欧拉猜想不对。但到1960年,数学家们彻底解决了这个问题,证明了n=4t+2(t≥2)阶欧拉方都是存在的,除了四军官和三十六军官外,这样的方队都是排得起来的。
希望我能帮助你解疑释惑。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
系数就是你之前求出相应的特征值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
掌握正交变换化二次型为标准形的方法,标准形中平方项的系数就是二次型矩阵的特征值,所用的正交变换矩阵就是经过改造的二次型矩阵的特征向量。
具体步骤如下:
1、写出二次型矩阵A
2、求矩阵A的特征值(λ1,λ2,...,λn)
3、求矩阵A的特征向量(α1,α2,...,αn)
4、改造特征向量(单位化、Schmidt正交化)γ1,γ2,...,γn
5、构造正交矩阵P=(γ1,γ2,...,γn)
则经过坐标变换x=Py,得
f=xTAx=yTBy=λ1y1²+λ2y2²+...+λnyn²
注意:特征值λ1,λ2,...的顺序与正交矩阵P中对应的特征向量γ1,γ2,...的顺序是一致的。
newmanhero 2015年6月19日16:10:11
希望对你有所帮助,望采纳。
具体步骤如下:
1、写出二次型矩阵A
2、求矩阵A的特征值(λ1,λ2,...,λn)
3、求矩阵A的特征向量(α1,α2,...,αn)
4、改造特征向量(单位化、Schmidt正交化)γ1,γ2,...,γn
5、构造正交矩阵P=(γ1,γ2,...,γn)
则经过坐标变换x=Py,得
f=xTAx=yTBy=λ1y1²+λ2y2²+...+λnyn²
注意:特征值λ1,λ2,...的顺序与正交矩阵P中对应的特征向量γ1,γ2,...的顺序是一致的。
newmanhero 2015年6月19日16:10:11
希望对你有所帮助,望采纳。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |