圆周率的来历。。

详细一点。。。... 详细一点。。。 展开
 我来答
啵妞999
2018-03-31 · TA获得超过1.2万个赞
知道小有建树答主
回答量:166
采纳率:100%
帮助的人:42.6万
展开全部

祖冲之在数学上的杰出成就,是关于圆周率的计算。

  1. 秦汉以前,通常以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过到最后还是没有统一到底是多少。


  2. 到了三国的时候,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。祖冲之在前人成就的基础上,经过刻苦钻研和反复的演算终于得出了现在的圆周率。

  3. 圆的周长与直径之比是一个常数,通常称为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,经过欧拉予以提倡,才渐渐的推广开来。

  4. 在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是这样的,到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为3.16。

  5. 直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。

匿名用户
2013-12-12
展开全部
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
穆杰yei
2020-09-05 · TA获得超过175个赞
知道答主
回答量:12
采纳率:0%
帮助的人:6808
展开全部
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
麋鹿时往前走oo
科技发烧友

2022-10-30 · 有一些普通的科技小锦囊
知道大有可为答主
回答量:4194
采纳率:100%
帮助的人:567万
展开全部

圆周率是根据已知圆面积被"化圆为方"时,发现“圆面积是它外切正方形面积的九分之七”。在已它外切正方形面积的九分之七拼补上九分之二就推出了对应的直径是3和对应的圆的周长是6+2√3。

由此可见,圆的周长与直径的唯一一个比本是:6+2√3比3。根据这个比,圆周率π只能等于(6+2√3)/3(或约等于3.1547005...也是我国西汉的文学家刘歆最早首先确定为圆周率)。

其余的比值都属于“正n边形的周长与对角线的比”计算的比值(或正6x2ⁿ边形的周长与过中心点的对角线的比值)为正n边率。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-09-28 · TA获得超过1.2万个赞
知道答主
回答量:10.4万
采纳率:2%
帮助的人:5024万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式