如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一

象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数... 象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为 展开
time神魔逆天
2014-04-16 · 超过17用户采纳过TA的回答
知道答主
回答量:47
采纳率:0%
帮助的人:37.1万
展开全部
连接AC,求出△BAC是等边三角形,推出AC=AB,求出△DC′B′是等边三角形,推出C′D=B′D,得出CB=BD=B′C′,推出A和D重合,连接BB′交x轴于E,求出AB′=AB=2,∠B′AE=60°,求出B′的坐标是(3,-
3
),设经过点B′反比例函数的解析式是y=
k
x
,代入求出即可.

解:
连接AC,
∵四边形OABC是菱形,
∴CB=AB,∠CBA=∠AOC=60°,
∴△BAC是等边三角形,
∴AC=AB,
∵将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,
∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,
∵∠B′DC′=60°,
∴∠DC′B′=60°,
∴△DC′B′是等边三角形,
∴C′D=B′D,
∴CB=BD=B′C′,
即A和D重合,
连接BB′交x轴于E,
则AB′=AB=2,∠B′AE=180°-(180°-60°)=60°,
在Rt△AB′E中,∠B′AE=60°,AB′=2,
∴AE=1,B′E=3
,OE=2+1=3,
即B′的坐标是(3,-3 ),
设经过点B′反比例函数的解析式是y=k x

代入得:k=-3,
即y=-3x ,
故答案为:y=-3x
来自:求助得到的回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
weigan4110
2014-04-16 · TA获得超过27.9万个赞
知道大有可为答主
回答量:2.6万
采纳率:14%
帮助的人:9111万
展开全部

追问
谢啦
追答
祝学习进步,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式