初二的数学题 在平面直角坐标系中,点C(-3,0),点A,B分别在x轴、y轴的正半轴上, 200
我只要第三问过程这是我老师给我提供的。我提供了200分了求的是以ABP为顶点三角形的和三角形AOB...
我只要第三问过程
这是我老师给我提供的。
我提供了200分了
求的是以ABP为顶点三角形的和三角形AOB 展开
这是我老师给我提供的。
我提供了200分了
求的是以ABP为顶点三角形的和三角形AOB 展开
5个回答
展开全部
(1)
∵ [√(OB²-3)]+|OA-1|=0 ,
∴ OB²-3=0 ,OA-1=0 ,
∴ OB=√3 ,OA=1 ,
∴ A(1,0) ;B(0,√3) 。
(2)
∵ OA=1 ,OB=√3 ,OC=3 ,
∴ AB²=OA²+OB²=1²+(√3)²=4 ,
BC²=OB²+OC²=(√3)²+3²=12 ,
AC²=(OA+OC)²=(1+3)²=16 ,
∴ AC²=AB²+BC² ,
∴ ∠ABC=90°,
∴ S=AB*BP/2=2*(BC-t)/2=(2√3)-t 。
(3)
设 △ABP≌△AOB ,
则 AB/BP=OB/OA ,
∴ 2/[(2√3)-t]=(√3)/1 ,
∴ 2=6-(√3)t ,
∴ t=(4/3)√3 ,
作 PE⊥AC交于E ,
则 CE/CP=CO/OB ,
∴ CE/[(4/3)√3]=3/(2√3) ,
∴ CE=2 ,EA=1 ;
则 EP/CE=OB/CO ,
∴ EP/2=(√3)/3
∴ EP=(2/3)√3 ,
∴ P[-1 ,(2/3)√3] 。
∵ [√(OB²-3)]+|OA-1|=0 ,
∴ OB²-3=0 ,OA-1=0 ,
∴ OB=√3 ,OA=1 ,
∴ A(1,0) ;B(0,√3) 。
(2)
∵ OA=1 ,OB=√3 ,OC=3 ,
∴ AB²=OA²+OB²=1²+(√3)²=4 ,
BC²=OB²+OC²=(√3)²+3²=12 ,
AC²=(OA+OC)²=(1+3)²=16 ,
∴ AC²=AB²+BC² ,
∴ ∠ABC=90°,
∴ S=AB*BP/2=2*(BC-t)/2=(2√3)-t 。
(3)
设 △ABP≌△AOB ,
则 AB/BP=OB/OA ,
∴ 2/[(2√3)-t]=(√3)/1 ,
∴ 2=6-(√3)t ,
∴ t=(4/3)√3 ,
作 PE⊥AC交于E ,
则 CE/CP=CO/OB ,
∴ CE/[(4/3)√3]=3/(2√3) ,
∴ CE=2 ,EA=1 ;
则 EP/CE=OB/CO ,
∴ EP/2=(√3)/3
∴ EP=(2/3)√3 ,
∴ P[-1 ,(2/3)√3] 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)∵√(OB²-3)+|OA-1| =0
(OB²-3)≥0 OA-1≥0
∴OB=√3 OA=1
即A(1,0) B(0,√3)
(2)∵OC=3 OA=1
∴AC=4
∵OA=1 OB=√3
∴AB=2
∵OC=3 OB=√3
∴BC=2√3
∵AB²+BC²=2²+(2√3)²=4²=AC²
∴∠ABC=90°
∴S△ABP=AB×BP÷2
AB=2 BP=2√3-t
∴S△ABP=-t+2√3
∴S=-t+2√3
(3)过点P作PD⊥X轴 垂足为D
当OP⊥BC时 四边形ABPO是梯形
∵AB=2 AC=4 ∴∠BCA=30°
∴PO=1.5 OD=0.75 OP=3√3÷4
∴P(-0.75,0.75√3)
(OB²-3)≥0 OA-1≥0
∴OB=√3 OA=1
即A(1,0) B(0,√3)
(2)∵OC=3 OA=1
∴AC=4
∵OA=1 OB=√3
∴AB=2
∵OC=3 OB=√3
∴BC=2√3
∵AB²+BC²=2²+(2√3)²=4²=AC²
∴∠ABC=90°
∴S△ABP=AB×BP÷2
AB=2 BP=2√3-t
∴S△ABP=-t+2√3
∴S=-t+2√3
(3)过点P作PD⊥X轴 垂足为D
当OP⊥BC时 四边形ABPO是梯形
∵AB=2 AC=4 ∴∠BCA=30°
∴PO=1.5 OD=0.75 OP=3√3÷4
∴P(-0.75,0.75√3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个很简单,但是不会发图。
200分啊,可惜了。
200分啊,可惜了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询