
待定系数法因式分解为什么原式一项系数为一分解时字母项系数可直接为一
例如x^2-xy+y^2+x+y直接分为(x+y+a)(x+y+b)而不是(ax+by+c),(mx+ny+q)...
例如
x^2-xy+y^2+x+y 直接分为(x+y+a)(x+y+b)
而不是(ax+by+c),(mx+ny+q) 展开
x^2-xy+y^2+x+y 直接分为(x+y+a)(x+y+b)
而不是(ax+by+c),(mx+ny+q) 展开
1个回答
2014-10-10
展开全部
你要那么设也可以,但是加入一堆未知数,没有必要。你要愿意把(ax+by+c)·(mx+ny+q)打开再计算六元二次方程组的话,比对一下就会发现am=1,干脆就设为(ax+by+c)·[(1/a)x+ny+q],再慢慢变形,最终还是(x+y+a)(x+y+b) 的形式。但关键在于先将所有二次项分解完全。
所以你的例如后面一行有问题,若(x+y+a)(x+y+b) ,则问题必然为x^2+2xy+y^2+……而不是x^2-xy+y^2+……。
这个待定系数法实际上是所谓双十字相乘的一部分,也就是先把二次项因式分解再说,其次再用常数项去配一次项和零次项。
所以你的例如后面一行有问题,若(x+y+a)(x+y+b) ,则问题必然为x^2+2xy+y^2+……而不是x^2-xy+y^2+……。
这个待定系数法实际上是所谓双十字相乘的一部分,也就是先把二次项因式分解再说,其次再用常数项去配一次项和零次项。
追问
这个例如是不能分解的典例。。。
追答
?没明白你的意思噢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询