如图,在四边形ABCD中,∠ABC=90.CD⊥AD.AD+CD=2AB.⑴求证:AB=B

如图,在四边形ABCD中,∠ABC=90.CD⊥AD.AD+CD=2AB.⑴求证:AB=BC;⑵当BE⊥AD于E时,试证明:BE=AE+CD.... 如图,在四边形ABCD中,∠ABC=90.CD⊥AD.AD+CD=2AB.⑴求证:AB=BC;⑵当BE⊥AD于E时,试证明:BE=AE+CD. 展开
 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
匿名用户
2015-08-15
展开全部
1)证明:连接AC.
∵∠ABC=90°,
∴AB2+BC2=AC2.
∵CD⊥AD,
∴AD2+CD2=AC2.
∵AD2+CD2=2AB2,
∴AB2+BC2=2AB2,
∴AB=BC.

(2)证明:过C作CF⊥BE于F.
∵BE⊥AD,
∴四边形CDEF是矩形.
∴CD=EF.
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
∴在△BAE与△CBF中

∴△BAE≌△CBF.(AAS)
∴AE=BF.
∴BE=BF+EF=AE+CD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式