如图,在四边形ABCD中,∠ABC=90.CD⊥AD.AD+CD=2AB.⑴求证:AB=B
如图,在四边形ABCD中,∠ABC=90.CD⊥AD.AD+CD=2AB.⑴求证:AB=BC;⑵当BE⊥AD于E时,试证明:BE=AE+CD....
如图,在四边形ABCD中,∠ABC=90.CD⊥AD.AD+CD=2AB.⑴求证:AB=BC;⑵当BE⊥AD于E时,试证明:BE=AE+CD.
展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
2015-08-15
展开全部
1)证明:连接AC.
∵∠ABC=90°,
∴AB2+BC2=AC2.
∵CD⊥AD,
∴AD2+CD2=AC2.
∵AD2+CD2=2AB2,
∴AB2+BC2=2AB2,
∴AB=BC.
(2)证明:过C作CF⊥BE于F.
∵BE⊥AD,
∴四边形CDEF是矩形.
∴CD=EF.
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
∴在△BAE与△CBF中
∴
∴△BAE≌△CBF.(AAS)
∴AE=BF.
∴BE=BF+EF=AE+CD
∵∠ABC=90°,
∴AB2+BC2=AC2.
∵CD⊥AD,
∴AD2+CD2=AC2.
∵AD2+CD2=2AB2,
∴AB2+BC2=2AB2,
∴AB=BC.
(2)证明:过C作CF⊥BE于F.
∵BE⊥AD,
∴四边形CDEF是矩形.
∴CD=EF.
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
∴在△BAE与△CBF中
∴
∴△BAE≌△CBF.(AAS)
∴AE=BF.
∴BE=BF+EF=AE+CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |