几道求函数值域的题 急
1f(x)=(2x^2-x+1)/(x-1)(x>1)2f(x)={-x^2-2x(-2<=x<=0)x^2-4x+1(0<x<=5)这是一个分段函数啊3f(x)=(2x...
1 f(x)=(2x^2-x+1)/(x-1) (x>1)
2 f(x)={-x^2-2x (-2<=x<=0) x^2-4x+1(0<x<=5) 这是一个分段函数啊
3 f(x)=(2x^2+2x+5)/(x^2+x+1)
4 f(x)=(2x^2+2x+5)/(x^2+x-1)(1<=x<=2)
要有过程和方法啊 谢谢 展开
2 f(x)={-x^2-2x (-2<=x<=0) x^2-4x+1(0<x<=5) 这是一个分段函数啊
3 f(x)=(2x^2+2x+5)/(x^2+x+1)
4 f(x)=(2x^2+2x+5)/(x^2+x-1)(1<=x<=2)
要有过程和方法啊 谢谢 展开
展开全部
1.f(x)=(2x^2-x+1)/(x-1) (x>1)
解析:∵f(x)=(2x^2-x+1)/(x-1),其定义域为x>1
令F’(x)=[(4x-1)(x-1)-(2x^2-x+1)]/(x-1)^2=(2x^2-4x)/(x-1)^2=0
X1=0(舍),x2=2
∵2x^2-4x为开口向上的抛物线,当x渐增取过x=2时,F’(x)由负变正
∴f(x)在x=2处取最小值f(2)=7
∴函数f(x)的值域为[7,+∞)
2.f(x)={-x^2-2x (-2<=x<=0) x^2-4x+1(0<x<=5) 这是一个分段函数啊
解析:∵f(x)=-x^2-2x=-(x+1)^2+1 (-2<=x<=0)
f(-2)= f(0)=0
∴f(x)值域为[0,1]
∵f(x)=x^2-4x+1=(x-2)^2-3(0<x<=5)
f(0)=1, f(5)=6
∴f(x)值域为[-3,6]
取二者并
∴f(x)值域为[-3,6]
3.f(x)=(2x^2+2x+5)/(x^2+x+1)
解析:∵ f(x)=(2x^2+2x+5)/(x^2+x+1),其定义域为R
f'(x)=3(2x+1)/(x^2+x+1)^2=0==>x=-1/2
∴f(x)在x=-1/2处取极大值f(-1/2)=6
f(x)=(2x^2+2x+2+3)/(x^2+x+1)=2+3/(x^2+x+1)
∴当x趋向∞时,f(x)趋向2
∴f(x)的值域为(2,6]
4.f(x)=(2x^2+2x+5)/(x^2+x-1)(1<=x<=2)
解析:∵ f(x)=(2x^2+2x+5)/(x^2+x-1),其定义域为(x≠-1-√5)/2, x≠(-1+√5)/2
f'(x)= -7(2x+1)/(x^2+x-1)^2=0==>x=-1/2
∴f(x)在x=-1/2处取极大值
∵1<=x<=2,(-1+√5)/2<1
∴当x>(-1+√5)/2时,f'(x)<0,函数f(x)单调减
f(1)=9,f(2)=17/5
∴f(x)的值域为[17/5,9]
解析:∵f(x)=(2x^2-x+1)/(x-1),其定义域为x>1
令F’(x)=[(4x-1)(x-1)-(2x^2-x+1)]/(x-1)^2=(2x^2-4x)/(x-1)^2=0
X1=0(舍),x2=2
∵2x^2-4x为开口向上的抛物线,当x渐增取过x=2时,F’(x)由负变正
∴f(x)在x=2处取最小值f(2)=7
∴函数f(x)的值域为[7,+∞)
2.f(x)={-x^2-2x (-2<=x<=0) x^2-4x+1(0<x<=5) 这是一个分段函数啊
解析:∵f(x)=-x^2-2x=-(x+1)^2+1 (-2<=x<=0)
f(-2)= f(0)=0
∴f(x)值域为[0,1]
∵f(x)=x^2-4x+1=(x-2)^2-3(0<x<=5)
f(0)=1, f(5)=6
∴f(x)值域为[-3,6]
取二者并
∴f(x)值域为[-3,6]
3.f(x)=(2x^2+2x+5)/(x^2+x+1)
解析:∵ f(x)=(2x^2+2x+5)/(x^2+x+1),其定义域为R
f'(x)=3(2x+1)/(x^2+x+1)^2=0==>x=-1/2
∴f(x)在x=-1/2处取极大值f(-1/2)=6
f(x)=(2x^2+2x+2+3)/(x^2+x+1)=2+3/(x^2+x+1)
∴当x趋向∞时,f(x)趋向2
∴f(x)的值域为(2,6]
4.f(x)=(2x^2+2x+5)/(x^2+x-1)(1<=x<=2)
解析:∵ f(x)=(2x^2+2x+5)/(x^2+x-1),其定义域为(x≠-1-√5)/2, x≠(-1+√5)/2
f'(x)= -7(2x+1)/(x^2+x-1)^2=0==>x=-1/2
∴f(x)在x=-1/2处取极大值
∵1<=x<=2,(-1+√5)/2<1
∴当x>(-1+√5)/2时,f'(x)<0,函数f(x)单调减
f(1)=9,f(2)=17/5
∴f(x)的值域为[17/5,9]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询