如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=DE,DF=2...
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=DE,DF=2,求AD的长.
展开
1个回答
展开全部
解答:(1)证明:连接OD.
∵AB=AC,∴∠C=∠B. (1分)
∵OD=OB,∴∠B=∠1.
∴∠C=∠1. (2分)
∴OD∥AC,∴∠2=∠FDO. (3分)
∵DF⊥AC,∴∠2=90°,∴∠FDO=90°,
即FD⊥OD.
∴FD是圆O的切线. (4分)
(2)解:∵AB是⊙O的直径,∴∠ADB=90°. (5分)
∵AC=AB,∴∠3=∠4. (6分)
∴
=
,∵
=
,∴
=
=
. (7分)
∴∠B=2∠4,∴∠B=60°,∠5=120°,
∴△ABC是等边三角形,∠C=60°. (8分)
在Rt△CFD中,sinC=
,CD=
=
=
,
∴DB=
,AB=BC=
,∴AO=
. (9分)
∴l
=
=
π. (10分)
∵AB=AC,∴∠C=∠B. (1分)
∵OD=OB,∴∠B=∠1.
∴∠C=∠1. (2分)
∴OD∥AC,∴∠2=∠FDO. (3分)
∵DF⊥AC,∴∠2=90°,∴∠FDO=90°,
即FD⊥OD.
∴FD是圆O的切线. (4分)
(2)解:∵AB是⊙O的直径,∴∠ADB=90°. (5分)
∵AC=AB,∴∠3=∠4. (6分)
∴
ED |
DB |
AE |
DE |
DE |
DB |
AE |
∴∠B=2∠4,∴∠B=60°,∠5=120°,
∴△ABC是等边三角形,∠C=60°. (8分)
在Rt△CFD中,sinC=
DF |
CD |
2 |
sin60° |
2 | ||||
|
4 |
3 |
3 |
∴DB=
4 |
3 |
3 |
8 |
3 |
3 |
4 |
3 |
3 |
∴l
AD |
nπR |
180 |
8
| ||
9 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询