(2013?谷城县模拟)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,
(2013?谷城县模拟)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)求证:KE=GE...
(2013?谷城县模拟)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若AC∥EF,试判断线段KG、KD、GE间的相等数量关系,并说明理由;(3)在(2)的条件下,若sinE=35,AK=25,求FG的长.
展开
展开全部
解:(1)如图1,连接OG.
∵EG为切线,
∴∠KGE+∠OGA=90°.
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)KG2=KD?GE.理由如下:
如图2,连接GD.
∵AC∥EF,
∴∠C=∠E.
又∵∠C=∠AGD,
∴∠KGD=∠E.
又∵由(1)知∠KGE=∠GKE,
∴△GKD∽△EGK,
∴
=
,即KG2=KD?GE;
(3)连接OG,OC,如图3所示.
sinE=sin∠ACH=
,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2
)2,解得t=
.
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r-3t)2+(4t)2=r2,解得r=
t=
.
∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=
,tan∠OFG=tan∠CAH=
=
,
∴FG=
=
∵EG为切线,
∴∠KGE+∠OGA=90°.
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)KG2=KD?GE.理由如下:
如图2,连接GD.
∵AC∥EF,
∴∠C=∠E.
又∵∠C=∠AGD,
∴∠KGD=∠E.
又∵由(1)知∠KGE=∠GKE,
∴△GKD∽△EGK,
∴
KG |
GE |
KD |
KG |
(3)连接OG,OC,如图3所示.
sinE=sin∠ACH=
3 |
5 |
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2
5 |
2 |
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r-3t)2+(4t)2=r2,解得r=
25 |
6 |
25
| ||
6 |
∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=
25
| ||
6 |
CH |
AH |
4 |
3 |
∴FG=
OG |
tan∠OFG |
|