已知命题p:方程ax2+2x+1=0至少有一负根;命题q:任意实数x∈R满足不等式x2+2ax+1≥0,(1)求命题p中a的
已知命题p:方程ax2+2x+1=0至少有一负根;命题q:任意实数x∈R满足不等式x2+2ax+1≥0,(1)求命题p中a的范围(2)若命题“p或q”为真,命题“p且q”...
已知命题p:方程ax2+2x+1=0至少有一负根;命题q:任意实数x∈R满足不等式x2+2ax+1≥0,(1)求命题p中a的范围 (2)若命题“p或q”为真,命题“p且q”为假时,求实数a的取值范围.
展开
1个回答
展开全部
(1)当a=0时,方程ax2 +2x+1=0可化为方程2x+1=0,方程存在一个负根
当a≠0时,若关于x的二次方程ax2 +2x+1=0有根
则△=4-4a≥0,即a≤1
若方程ax2 +2x+1=0无负根则x1 +x2 =-
≥0,x1?x2 =
≥0,这种情况不存在
故关于x的方程ax2 +2x+1=0,至少有一个负根的充要条件是a≤1
(2)∵任意实数x∈R满足不等式x2+2ax+1≥0,
∴△=4a2-4≤0
∴-1≤a≤1
若命题“p或q”为真,命题“p且q”为假时,则p、q一真一假
①p真q假,
,∴a<-1
②p假q真,
,∴a不存在
综上知,a<-1
当a≠0时,若关于x的二次方程ax2 +2x+1=0有根
则△=4-4a≥0,即a≤1
若方程ax2 +2x+1=0无负根则x1 +x2 =-
2 |
a |
1 |
a |
故关于x的方程ax2 +2x+1=0,至少有一个负根的充要条件是a≤1
(2)∵任意实数x∈R满足不等式x2+2ax+1≥0,
∴△=4a2-4≤0
∴-1≤a≤1
若命题“p或q”为真,命题“p且q”为假时,则p、q一真一假
①p真q假,
|
②p假q真,
|
综上知,a<-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询