证明:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A
证明:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)...
证明:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)
展开
1个回答
展开全部
证明:card(A∪B∪C)=card[(A∪B)∪C]=card(A∪B)+card(C)-card[(A∪B)∩C],
而card(A∪B)=card(A)+card(B)-card(A∩B),
card[(A∪B)∩C]=card[(A∩C)∪(B∩C)]=card(A∩C)+card(B∩C)-card[(A∩C)∩(B∩C)],
card[(A∩C)∩(B∩C)]=card(A∩B∩C),
所以card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C).
而card(A∪B)=card(A)+card(B)-card(A∩B),
card[(A∪B)∩C]=card[(A∩C)∪(B∩C)]=card(A∩C)+card(B∩C)-card[(A∩C)∩(B∩C)],
card[(A∩C)∩(B∩C)]=card(A∩B∩C),
所以card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询