换底公式怎么推导来的。
log(a)b=log(s)b/log(s)a (括号里的是底数)
设log(s)b=M,log(s)a =N,log(a)b=R,则s^M=b,s^N=a,a^R=b,
即(s^N)^R=a^R=b,s^(NR)=b,
所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
拓展资料:
在工程技术中,换底公式也是经常用到的公式。
例如,在编程语言中,有些编程语言(例如C语言)没有以a为底b为真数的对数函数,只有以常用对数(即以10为底的对数)或自然对数(即e为底的对数)。此时就要用到换底公式来换成以e或者10为底的对数,表示出以a为底b为真数的对数表达式,从而处理某些实际问题。
公式
参考资料:百度百科:换底公式
log(a)b=log(s)b/log(s)a (括号里的是底数)
设log(s)b=M,log(s)a =N,log(a)b=R,则s^M=b,s^N=a,a^R=b,
即(s^N)^R=a^R=b,s^(NR)=b,
所以M=NR,即R=M/N,log(a)b=log(s)b/log(s)a。
拓展资料:
换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算
通常在处理数学运算中,将一般底数转换为以e为底的自然对数或者是转换为以10为底的常用对数,方便运算;有时也通过用换底公式来证明或求解相关问题;
在计算器上计算对数时需要用到这个公式。例如,大多数计算器有自然对数和常用对数的按钮,但却没有[log2]的。要计算 ,你只有计算 (或 ,两者结果一样)
参考资料:百度百科-换底公式
则log(a)(b)=log(n^x)(n^y)
根据 对数的基本公式
log(a)(M^n)=nloga(M) 和 基本公式log(a^n)M=1/n×log(a) M
易得log(n^x)(n^y)=y/x
由 a=n^x,b=n^y 可得 x=log(n)(a),y=log(n)(b)
则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a)
得证:log(a)(b)=log(n)(b)/log(n)(a)
不同分母的两个分数不能直接相加,要换成相同的分母后才能相加.同理底不同的对数要相互运算,就需要换成同样的底.这样就产生了换底公式。
推倒一: 设a^b=N…………① 则b=logaN…………② 把②代入①即得对数恒等式: a^(logaN)=N…………③ 把③两边取以m为底的对数得 logaN·logma=logmN 所以 logaN=(logmN)/(logma)
推导二: 设t=log(a)b 则有a^t=b 两边取以e为底的对数 tlna=lnb t=lnb/lna 即是:log(a)b=lnb/lna
拓展资料
换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。
指数函数
在高等数学中有一种求导方法叫对数求导法,其原理就是指数函数的换底,把底为普通常数或变量的指数函数或幂指函数统统都变形为以e为底的复合函数形式。
应用
对数计算
通常在处理数学运算中,将一般底数转换为以e为底的自然对数或者是转换为以10为底的常用对数,方便运算;有时也通过用换底公式来证明或求解相关问题。
工程技术
在工程技术中,换底公式也是经常用到的公式。
例如,在编程语言中,有些编程语言(例如C语言)没有以a为底b为真数的对数函数,只有以常用对数(即以10为底的对数)或自然对数(即e为底的对数)。此时就要用到换底公式来换成以e或者10为底的对数,表示出以a为底b为真数的对数表达式,从而处理某些实际问题
换底公式推导方法如下:
若有对数log(a)(b)设a=n^x,b=n^y(n>0,且n不为1)
如:log(10)(5)=log(5)(5)/log(5)(1换底公式过程0)
则 log(a)(b)=log(n^x)(n^y)
根据对数的基本公式
log(a)(M^n)=nloga(M)和 基本公式log(a^n)M=1/n×log(a) M
易得
log(n^x)(n^y)=ylog(n^x)(n)=y/x log(n)(n)=y/x
由 a=n^x,b=n^y
可得 x=log(n)(a),y=log(n)(b)
则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a)
得证:log(a)(b)=log(n)(b)/log(n)(a)
拓展内容:
换底公式的应用
1、数学对数
在数学对数运算中,通常是不同底的对数运算,这时就需要换底。.
通常在处理数学运算中,将一般底数转换为以e为底(即In)的自然对数或者是转换为以10为底(即lg)的常用对数,方便于我们运算;有时也通过用换底公式来证明或求解相关问题
2、工程技术
在工程技术中,换底公式也是经常用到的公式,
例如,在编程语言中,有些编程语言(例如C语言)没有以a为底b为真数的对数函数;只有以常用对数10为底的对数或自然对数e为底的对数(即Ig、In),此时就要用到换底公式来换成以e或者10为底的对数来表示出以a为底b为真数的对数表达式,从而来处理某些实际问题。
loga(b)=logc(b)/logc(a)(c>0,c≠1)
推导过程
令loga(b)=t................................(1)
即a^t=b
两边取以c(c>0,c≠1)的对数
即logc(a^t)=logc(b)
即 t logc(a)=logc(b)
故由a≠1,即 logc(a)≠0
即t=logc(b)/ logc(a)..............(2)
由(1)与(2)知
loga(b)=logc(b)/logc(a)。