设A为n阶方阵,且A2=A,证明:若A的秩为r,则A-E的秩为n-r,其中E是n阶单位矩阵
1个回答
展开全部
因为:A2=A,所以:A(A-E)=0,
则:r(A)+r(A-E)≤n,
又因为:r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n,
所以:r(A)+r(A-E)=n,
则:r(A-E)=n-r,
证毕.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询