如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0
如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物...
如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
(3)抛物线上有一点P,使AOBP为梯形,求P点坐标。
1、2题可不答,第三题要过程 展开
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
(3)抛物线上有一点P,使AOBP为梯形,求P点坐标。
1、2题可不答,第三题要过程 展开
展开全部
解:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,
得
解这个方程组,得a=﹣,b=1,c=0所以解析式为y=﹣x2+x.
(2)由y=﹣x2+x=﹣(x﹣1)2+,
可得抛物线的对称轴为x=1,
并且对称轴垂直平分线段OB
∴OM=BM
∴OM+AM=BM+AM连接AB交直线x=1于M点,
则此时OM+AM最小过点A作AN⊥x轴于点N,
在Rt△ABN中,AB===4,因此OM+AM最小值为.4倍根号2 3题过程先等一下
得
解这个方程组,得a=﹣,b=1,c=0所以解析式为y=﹣x2+x.
(2)由y=﹣x2+x=﹣(x﹣1)2+,
可得抛物线的对称轴为x=1,
并且对称轴垂直平分线段OB
∴OM=BM
∴OM+AM=BM+AM连接AB交直线x=1于M点,
则此时OM+AM最小过点A作AN⊥x轴于点N,
在Rt△ABN中,AB===4,因此OM+AM最小值为.4倍根号2 3题过程先等一下
更多追问追答
追问
第三题呢?
追答
因为A(﹣2,﹣4) p点的纵坐标为-4 因为AOBP为梯形∴p1(4,-4) 其实p不止一个坐标,我怕你着急,先写这个吧。我先算p2
展开全部
【1】OB//AP
P
纵坐标
与A一样为-4
由
对称轴
可得P1坐标为(4,-4)
【2】OA//BP
连AO求得yAO=-2x-2
因为AO//BP
所以kAO=kBP的绝对值
kBP=2或-2(斜率相同)
[1]kbp=-2时
因为B(2,0)所以yBP=-2x+4
yBP与
二次函数
交点为
B(2,0)P2(4,-4)
[2]kbp=2时
因为B(2,0)所以yBP=2x-2
yBP与二次函数交点为
B(2,0)P3()
P
纵坐标
与A一样为-4
由
对称轴
可得P1坐标为(4,-4)
【2】OA//BP
连AO求得yAO=-2x-2
因为AO//BP
所以kAO=kBP的绝对值
kBP=2或-2(斜率相同)
[1]kbp=-2时
因为B(2,0)所以yBP=-2x+4
yBP与
二次函数
交点为
B(2,0)P2(4,-4)
[2]kbp=2时
因为B(2,0)所以yBP=2x-2
yBP与二次函数交点为
B(2,0)P3()
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询