第一类曲线积分和第二类曲线积分有什么区别
5个回答
展开全部
第一类曲线积分和第二类曲线积分积分对象不同、应用场合不同、是否考虑方向。
1、积分对象不同:第一类曲线积分是对弧长积分,对弧长的曲线积分的积分元素是弧长元素;第二类曲线积分是对坐标(有向弧长在坐标轴的投影)积分,对坐标轴的曲线积分的积分元素是坐标元素。
2、应用场合不同:第一类曲线积分求非密度均匀的线状物体质量等问题,第二类曲线积分解决做功类等问题。
3、是否考虑方向:第一类的,都是和方向无关的,对标量的积分。第二类的,都是和方向有关的,对某种意义上的矢量的积分。
扩展资料:
第一、二类曲线积分的特点:
第一、二类曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。带有权重是曲线积分与一般区间上的积分的主要不同点。
量子力学中的“曲线积分形式”和第一、二类曲线积分并不相同,因为曲线积分形式中所用的积分是函数空间上的泛函积分,即关于空间中每个路径的概率函数进行积分。然而,曲线积分在量子力学中仍有重要作用,比如说复围道积分常常用来计算量子散射理论中的概率振幅。
参考资料:
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
在对弧长的曲线积分∫f(x,y)ds中,取f(x,y)=Pcosα+Qsinα,α为微小弧长ds与 x轴正向的夹角,则∫f(x,y)ds=∫(Pcosα+Qsinα)ds,而ds在x轴方向上的投影就是x轴上的微小增量dx,即ds*cosα=...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
第一类是对弧长积分,即定义在弧长上,没有方向.如求非密度均匀的线状物体质量。
第二类是对坐标(有向弧长在坐标轴的投影)积分,有方向.如解决做功类问题。
假设曲线正向,两者可互换,弧长元dscosθ=dx,dssinθ=dy,(cosθ,sinθ)是沿着正向曲线单位切向量。
第二类是对坐标(有向弧长在坐标轴的投影)积分,有方向.如解决做功类问题。
假设曲线正向,两者可互换,弧长元dscosθ=dx,dssinθ=dy,(cosθ,sinθ)是沿着正向曲线单位切向量。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第1类曲线积分和第2类曲线积分主要是他们采取积分的方式不同,第1类采用的是定积分的相关的曲线积分,而第2类则不用这种方法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
、应用场合不同、是否考虑方向。
1、积分对象不同:第一类曲线积分是对弧长积分,对弧长的曲线积分的积分元素是弧长元素;第二类曲线积分是对坐标(有向弧长在坐标轴的投影)积分,对坐标轴的曲线积分的积分元素是坐标元素。
2、应用场合不同:第一类曲线积分求非密度均匀的线状物体质量等问题,第二类曲线积分解决做功类等问题。
3、是否考虑方向
1、积分对象不同:第一类曲线积分是对弧长积分,对弧长的曲线积分的积分元素是弧长元素;第二类曲线积分是对坐标(有向弧长在坐标轴的投影)积分,对坐标轴的曲线积分的积分元素是坐标元素。
2、应用场合不同:第一类曲线积分求非密度均匀的线状物体质量等问题,第二类曲线积分解决做功类等问题。
3、是否考虑方向
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询