求解。要过程
2个回答
展开全部
解:
(1)
sin²A=sin²B+sin²C-sinBsinC
由正弦定理得:a²=b²+c²-bc
b²+c²-a²=bc
由余弦定理得:
cosA=(b²+c²-a²)/(2bc)=bc/(2bc)=½
A为三角形内角,A=π/3
(2)
三角形为锐角三角形
0<B<π/2,0<C<π/2
B=π-A-C=π-π/3-C=2π/3-C
0<2π/3-C<π/2
π/6<C<2π/3,又0<C<π/2,因此π/6<C<π/2
同理,π/6<B<π/2
由正弦定理得:a/sinA=b/sinB=c/sinC
b=asinB/sinA,c=asinC/sinA
b+c=asinB/sinA+asinC/sinA
=a(sinB+sinC)/sinA
=a[sin(A+C)+sinC]/sinA
=a(sinAcosC+cosAsinC+sinC)/sinA
=a[sin(π/3)cosC+cos(π/3)sinC+sinC]/sin(π/3)
=2√3·[(√3/2)cosC+(1/2)sinC+sinC]/(√3/2)
=4√3·[(1/2)cosC+(√3/2)sinC]
=4√3·sin(C+π/6)
π/6<C<π/2,π/3<C<2π/3
√3/2<sin(C+π/6)≤1
6<4√3·sin(C+π/6)≤4√3
6<b+c≤4√3
b+c的取值范围为(6,4√3]
(1)
sin²A=sin²B+sin²C-sinBsinC
由正弦定理得:a²=b²+c²-bc
b²+c²-a²=bc
由余弦定理得:
cosA=(b²+c²-a²)/(2bc)=bc/(2bc)=½
A为三角形内角,A=π/3
(2)
三角形为锐角三角形
0<B<π/2,0<C<π/2
B=π-A-C=π-π/3-C=2π/3-C
0<2π/3-C<π/2
π/6<C<2π/3,又0<C<π/2,因此π/6<C<π/2
同理,π/6<B<π/2
由正弦定理得:a/sinA=b/sinB=c/sinC
b=asinB/sinA,c=asinC/sinA
b+c=asinB/sinA+asinC/sinA
=a(sinB+sinC)/sinA
=a[sin(A+C)+sinC]/sinA
=a(sinAcosC+cosAsinC+sinC)/sinA
=a[sin(π/3)cosC+cos(π/3)sinC+sinC]/sin(π/3)
=2√3·[(√3/2)cosC+(1/2)sinC+sinC]/(√3/2)
=4√3·[(1/2)cosC+(√3/2)sinC]
=4√3·sin(C+π/6)
π/6<C<π/2,π/3<C<2π/3
√3/2<sin(C+π/6)≤1
6<4√3·sin(C+π/6)≤4√3
6<b+c≤4√3
b+c的取值范围为(6,4√3]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询