已知1的3次方=1=4分之1*1的平方*2的平方;1的3次方+2的3次方=9=4分之1*2的平方*3的平方;

1的3次方+2的3次方+3的3次方=36=4分之1*3的平方*4的平方;1的3次方+2的3次方+3的3次方+4的3次方=100=4分之1*4的平方*5的平方1.猜想填空:... 1的3次方+2的3次方+3的3次方=36=4分之1*3的平方*4的平方;1的3次方+2的3次方+3的3次方+4的3次方=100=4分之1*4的平方*5的平方
1.猜想填空:1的3次方+2的3次方+3的3次方+…+(n-1)的3次方+n的3次方=
计算:1的3次方+2的3次方+3的3次方+…+99的3次方+100的3次方
展开
新美红H
推荐于2016-12-01 · TA获得超过449个赞
知道小有建树答主
回答量:152
采纳率:0%
帮助的人:158万
展开全部
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
证明:
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]
=(2n^2+2n+1)(2n+1)
=4n^3+6n^2+4n+1

2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
......
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1

各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n

4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n
=[n(n+1)]^2

1^3+2^3+...+n^3=[n(n+1)/2]^2
当n=100,得1^3+2^3+3^3+……+100^3=[100(100+1)/2]^2=25502500.
世博世波士博
2010-11-28
知道答主
回答量:7
采纳率:0%
帮助的人:0
展开全部
25502500
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式