求解一个一阶线性微分方程,请写出步骤。
2个回答
展开全部
p' + [1/(x+1)]p = ln(x+1)/(x+1)
(x+1)p' + p =ln(x+1)
d/dx[ ( x+1) p] = ln(x+1)
( x+1) p = ∫ ln(x+1) dx
= xln(x+1) - ∫ [x/(x+1)] dx
= xln(x+1) - ∫ [1- 1/(x+1)] dx
=xln(x+1) - x +ln(x+1) + C
=(x+1)ln(x+1) - x + C
p = [(x+1)ln(x+1) - x + C]/(x+1)
(x+1)p' + p =ln(x+1)
d/dx[ ( x+1) p] = ln(x+1)
( x+1) p = ∫ ln(x+1) dx
= xln(x+1) - ∫ [x/(x+1)] dx
= xln(x+1) - ∫ [1- 1/(x+1)] dx
=xln(x+1) - x +ln(x+1) + C
=(x+1)ln(x+1) - x + C
p = [(x+1)ln(x+1) - x + C]/(x+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |