设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y), 且x>0时, f(x)<0, f(1)=-2.
(1)求证:f(x)是奇函数。(2)判、证其单调性。(3)求f(x)在[-3,3]上的最大值与最小值。...
(1)求证:f(x)是奇函数。
(2)判、证其单调性。
(3)求f(x)在[-3,3]上的最大值与最小值。 展开
(2)判、证其单调性。
(3)求f(x)在[-3,3]上的最大值与最小值。 展开
2个回答
展开全部
(1)证明:令x=y=0,得f(x+y)=f(x)+f(y)→f(0)=0
令y=-x,得f(x+y)=f(x)+f(y)→f(x)=-f(-x)
所以f(x)是奇函数
(2)因为x>0时, f(x)<0,所以f(x+y)=f(x)+f(y)→f(x+y)<f(y),即f(x)为单调递减函数
(3)因为奇函数关于原点对称,f(3)=f(2)+f(1)=3f(1)=-6 f(-3)= -f(3)=6
所以在f(x)在[-3,3]上的最大值为6,最小值为-6
令y=-x,得f(x+y)=f(x)+f(y)→f(x)=-f(-x)
所以f(x)是奇函数
(2)因为x>0时, f(x)<0,所以f(x+y)=f(x)+f(y)→f(x+y)<f(y),即f(x)为单调递减函数
(3)因为奇函数关于原点对称,f(3)=f(2)+f(1)=3f(1)=-6 f(-3)= -f(3)=6
所以在f(x)在[-3,3]上的最大值为6,最小值为-6
展开全部
f(x+y) = f(x) + f(y)
put x=y=0
f(0) = f(0) + f(0)
=> f(0) =0
put y=-x
f(0)= f(x) + f(-x)
f(x) = -f(x)
=>f(x)是奇函数
(2)
y> x
y = x+c ( where c>0)
f(y) = f(x+c)
= f(x) + f(c)
< f(x) ( f(c) < 0 )
f(x)是减函数
(3)
f(x+y) = f(x) + f(y)
put x=1, y=1
f(2) = f(1) + f(1)
= 2f(1) = -4
put x=1, y=2
f(3) = f(1) + f(2)
= -2 -4 = -6
f(x)是减函数
x∈[-3,3]
minf(x) = f(3) =-6
maxf(x) = f(-3) = -(-6) = 6
put x=y=0
f(0) = f(0) + f(0)
=> f(0) =0
put y=-x
f(0)= f(x) + f(-x)
f(x) = -f(x)
=>f(x)是奇函数
(2)
y> x
y = x+c ( where c>0)
f(y) = f(x+c)
= f(x) + f(c)
< f(x) ( f(c) < 0 )
f(x)是减函数
(3)
f(x+y) = f(x) + f(y)
put x=1, y=1
f(2) = f(1) + f(1)
= 2f(1) = -4
put x=1, y=2
f(3) = f(1) + f(2)
= -2 -4 = -6
f(x)是减函数
x∈[-3,3]
minf(x) = f(3) =-6
maxf(x) = f(-3) = -(-6) = 6
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询