2个回答
展开全部
f(x)= x^3-3ax^2+2x-1
f'(x) = 3x^2-6ax+2
f''(x) = 6x-6a = 0
x = a
f'''(x) = 6 > 0
ie when x=a, f'(x) attains minimum
f'(a) = 3a^2-6a^2+2
= -3a^2 +2 >0
3a^2 -2 <0
-√(2/3) < a < √(2/3)
=> -√6/3 < a <√6/3
f'(x) = 3x^2-6ax+2
f''(x) = 6x-6a = 0
x = a
f'''(x) = 6 > 0
ie when x=a, f'(x) attains minimum
f'(a) = 3a^2-6a^2+2
= -3a^2 +2 >0
3a^2 -2 <0
-√(2/3) < a < √(2/3)
=> -√6/3 < a <√6/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询