已知tan(α+6π/5)=m(m≠1),求sin[(11π/5)+α]+3cos(α-9π/5)/sin[(14π/5)-α]+cos(α+16π/5)的值
展开全部
由条件推出tan(α+π/5)=-m
sin(α+π/5)=-mcos(α+π/5)
原式=<sin(π/5+α)+3cos(α+π/5)>/<sin(4π/5-α)-cos(α+π/5)>
=<sin(π/5+α)+3cos(α+π/5)>/<sin(π-(π/5+α))-cos(α+π/5)>
=<sin(π/5+α)+3cos(α+π/5)>/<sin(π/5+α)-cos(α+π/5)>
=<-mcos(π/5+α)+3cos(α+π/5)>/<-mcos(4π/5-α)-cos(α+π/5)>
=(-m+3)/(-m-1)
=(m-3)/(m+1)
sin(α+π/5)=-mcos(α+π/5)
原式=<sin(π/5+α)+3cos(α+π/5)>/<sin(4π/5-α)-cos(α+π/5)>
=<sin(π/5+α)+3cos(α+π/5)>/<sin(π-(π/5+α))-cos(α+π/5)>
=<sin(π/5+α)+3cos(α+π/5)>/<sin(π/5+α)-cos(α+π/5)>
=<-mcos(π/5+α)+3cos(α+π/5)>/<-mcos(4π/5-α)-cos(α+π/5)>
=(-m+3)/(-m-1)
=(m-3)/(m+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询