设函数f(x)在点x0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数
扩展资料
函数极限的四则运算法则
设f(x)和g(x)在自变量的同一变化过程中极限存在,则它们的和、差、积、商(作为分母的函数及其极限值不等于0)的极限也存在,并且极限值等于极限的和、差、积、商。非零常数乘以函数不改变函数极限的存在性。
相关定理:夹逼定理
设L(x)、f(x)、R(x)在自变量变化过程中的某去心邻域或某无穷邻域内满足L(x)≤f(x)≤R(x),且L(x)、R(x)在自变量的该变化过程中极限存在且相等,则f(x)在该自变量的变化过程中极限也存在并且相等。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
广义的“极限”是指“无限靠近而永远不能到达”的意思。
扩展资料
解决问题的极限思想:
“极限思想”方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。
数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。
人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的概念和以上的极限思想方法。 用极限的思想方法是有科学性的,因为可以通过极限的函数计算方法得到极为准确的结论。
参考资料来源:百度百科-极限
至于2ε是不是无穷小,这个问题可以说是在牛顿和莱布尼茨创立微积分学说后,引发的第二次数学危机的一个问题,2ε是无穷小,那么3ε,4ε,……十万乘以ε还是不是无穷小呢?(见谷堆悖论)直到后来康托创立集合论,才解决了第二次的数学危机。如果楼主是读数学系,等以后学实变函数的时候,包括勒贝格的测度论,就会对这里领会得更为透彻。(ps:康托是个非常了不起的数学家,尽管罗素悖论引发了第三次的数学危机,以及后世人如ZF公理对康托集合论进行补充,但仍不掩康托的伟大。不得不说,康托到目前为止是不可超越的。)