如题,二次型的矩阵都是实对称的吗

 我来答
壬颀义慧捷
2019-07-18 · TA获得超过3948个赞
知道小有建树答主
回答量:3217
采纳率:29%
帮助的人:247万
展开全部
二次型的系数在实数域上时,对应的二次型矩阵是实对称矩阵,实二次型一定可以用实对称矩阵来表示,因为x'ax=x'[(a+a')/2]x,(a+a')/2肯定是对称的。实对称矩阵都可以通过可逆线性变换化为标准型,主要的方法有配方法和初等变换法。
活宝上大夫
2017-04-13 · TA获得超过7491个赞
知道大有可为答主
回答量:5601
采纳率:0%
帮助的人:1116万
展开全部
实二次型一定可以用实对称矩阵来表示,因为x'Ax=x'[(A+A')/2]x,(A+A')/2肯定是对称的.
实对称矩阵具有良好的性质,所以都用对称矩阵来研究二次型.
由谱分解定理,实对称矩阵可以利用正交变换来对角化
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2019-05-25 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.5万
展开全部

是的。

P^-1AP = diag

则 A = PdiagP^-1

由于P正交,所以P^-1=P^T

所以 A = PdiagP^T

所以 A^T = (PdiagP^T)^T = PdiagP^T = A

两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。

扩展资料:

实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

若矩阵A满足条件A=A',则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。

参考资料来源:百度百科——实对称矩阵

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式