1个回答
展开全部
设Sn=1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n,则
1/2×Sn=1/2^2+2/2^3+...+(n-2)/2^(n-1)+(n-1)/2^n+n/2^(n+1)。相减得
1/2×Sn
=1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n-n/2^(n+1)
=1/2 *(1-1/2^n)/(1-1/2)-n/2^(n+1)
=1-1/2^n-n/2^(n+1)
所以Sn=2-1/2^(n-1)-n/2^n=2-(n+2)/2^n。
1/2×Sn=1/2^2+2/2^3+...+(n-2)/2^(n-1)+(n-1)/2^n+n/2^(n+1)。相减得
1/2×Sn
=1/2+1/2^2+1/2^3+...+1/2^(n-1)+1/2^n-n/2^(n+1)
=1/2 *(1-1/2^n)/(1-1/2)-n/2^(n+1)
=1-1/2^n-n/2^(n+1)
所以Sn=2-1/2^(n-1)-n/2^n=2-(n+2)/2^n。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询