离散数学:用主析取范式法证明下面推理是正确的。

离散数学:用主析取范式法证明下面推理是正确的。若a是奇数,则a不能被2整除.若a是偶数,则a能被2整除.因此,如果a是偶数,则a不是奇数.我最后写出来的主析取范式是乛((... 离散数学:用主析取范式法证明下面推理是正确的。若 a 是奇数, 则 a 不能被2 整除. 若 a 是偶数, 则 a 能被 2 整除. 因此, 如果 a 是偶数, 则 a 不是奇数.

我最后写出来的主析取范式是乛((乛pV乛q)^(qV乛r)^乛(乛pV乛r)),这个不对吧?再往下我写不出来了。
展开
 我来答
zzllrr小乐
高粉答主

2017-12-29 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78794

向TA提问 私信TA
展开全部
这个显然不是主析取范式。
p: a 是奇数
q: a 能被2 整除
r: a 是偶数
若 a 是奇数, 则 a 不能被2 整除:p→¬q
若 a 是偶数, 则 a 能被 2 整除:r→q
如果 a 是偶数, 则 a 不是奇数: r→¬p
(p→¬q)∧(r→q)
⇔ (¬p∨¬q)∧(¬r∨q) 变成 合取析取
⇔ (¬p∨¬q∨(¬r∧r))∧((¬p∧p)∨q∨¬r) 补项
⇔ ((¬p∨¬q∨¬r)∧(¬p∨¬q∨r))∧((¬p∧p)∨q∨¬r) 分配律
⇔ (¬p∨¬q∨¬r)∧(¬p∨¬q∨r)∧((¬p∧p)∨q∨¬r) 结合律
⇔ (¬p∨¬q∨¬r)∧(¬p∨¬q∨r)∧((¬p∨q∨¬r)∧(p∨q∨¬r)) 分配律
⇔ (¬p∨¬q∨¬r)∧(¬p∨¬q∨r)∧(¬p∨q∨¬r)∧(p∨q∨¬r) 结合律 【1】
得到主合取范式,

而r→¬p
⇔ ¬r∨¬p 变成 合取析取
⇔ ¬r∨¬p ∨(q∧¬q)
⇔ (¬r∨¬p ∨q)∧(¬r∨¬p ∨¬q)【2】
显然【2】式中的合取的子式,蕴含在【1】中
因此,推理正确。

(p→¬q)∧(r→q) ⇒ r→¬p
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式