求隐函数ln(x^2+y^2)^1/2=arctan y/x的导数dy/dx 20

 我来答
茹翊神谕者

2022-01-05 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25144

向TA提问 私信TA
展开全部

简单分析一下即可,详情如图所示

黑夜前夕的夕阳
2016-04-21 · TA获得超过229个赞
知道答主
回答量:97
采纳率:33%
帮助的人:42.1万
展开全部
ln(x^2+y^2)^1/2=arctan(y/x)
1/2ln(x^2+y^2)=arctan(y/x)
ln(x^2+y^2)=2arctan(y/x) 两边求导得
1/(x^2+y^2)*(2x+2yy')=2*1/(1+y^2/x^2)*(y'x-y)/x^2
(2x+2yy')/(x^2+y^2)=2x^2(y'x-y)/[(x^2+y^2)x^2]
2x+2yy'=2y'x-2y
2y'x-2yy'=2x+2y
y'=(x+y)/(x-y)
追问
要用隐函数微分法
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式