求此不定积分
2个回答
展开全部
∫(tanx)^2dx = ∫[(secx)^2-1]dx = tanx - x + C
∫(tanx)^4dx = ∫[(secx)^2-1]^2dx
= ∫[(secx)^4-2(secx)^2+1]dx = ∫(secx)^4dx - 2tanx + x + C
= ∫(secx)^2dtanx - 2tanx + x + C
= ∫[(tanx)^2+1]dtanx - 2tanx + x + C
= (1/3)(tanx)^3 - tanx + x + C
∫(tanx)^4dx = ∫[(secx)^2-1]^2dx
= ∫[(secx)^4-2(secx)^2+1]dx = ∫(secx)^4dx - 2tanx + x + C
= ∫(secx)^2dtanx - 2tanx + x + C
= ∫[(tanx)^2+1]dtanx - 2tanx + x + C
= (1/3)(tanx)^3 - tanx + x + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询