自然数有什么奇妙之处?

 我来答
广西师范大学出版社
2019-08-01 · 一切为了人与书的相遇。
广西师范大学出版社
向TA提问
展开全部

0、1、2、3、……,这些人人熟悉而又简单的自然数,有着许多奇妙有趣的性质。

右图(图片P134)中是一个小正方形,由此开始,第一层虚线标出了三个小正方形,第二层虚线标出了五个小正方形……,它说明了下面一些有趣的事实:

1=1-12

1=3=4=22

1+3+5=9=33

……

1+3+5+7+9+11+13+15=64=82一般地,如果n是一个自然数,则:1+3+5+……+(2n-1)=n2。

对于所有的自然数,下面的式子也是正确的:

13=12,13+23=1+8=9=(1+2)2

13+23+33=1+8+27=(1+2+3)2

13+23+33+43=1+8+27+64=(1+2+3+4)2

……

13+23+33……+n3=1+8+27+……+n3=(1+2+3+……+n)2

再来看6174这个数。把它的各位数从大到小写一遍,再从小到大写一遍,然后相减:7641-1467=6174。结果竟与原数6174一样。有趣的是,如果随便取一个四拉数,只要它的四个数字不完全相同,按上述方法对它处理,并重复多次,最终都将得到6174这个数。比如0923:

9320-0239=9081,

9810-0189=9621,

9621-1269=8352,

8532-2358=6174。

对随便一个六位数按上述方法计算,会得到三种结果:(1)631764的重复;(2)549945的重复;(3)下列七个数的循环:840852,860832,862632,642654,420876,851742,750843。

对八位数也有类似的结果,最后都归于63317664;对十位数来说,最后都归于6333176664,从四位数到十位数,用上述方法处理的结果,都与6174这个数有关。

1930年,意大利的杜西教授作了如下观察:

在一个圆周上放上任意四个数例如:8,43,17,29,让两个相邻的数相减,并且总是大的减小的,如此下去,在有限步之内必然会出现四个相等的数。科学家还证明,如果四个数中最大的是n,则在重复4n-1步时,四个差数将相同。

三位数也有奇妙的性质。

任取一个三位数,将各位数字倒看排出来成为一个新的数,加到原数上,反复这样做,对于大多数自然数,很快就会得到一个从左到右读与从右到左读完全一样的数。比如从195开始:

195+591=786

786+687=1473

1473+7341=5214

5214+4125=9339

只用四步就得到了上述结果。这种结果称为回文数,也称对称数。但是,也有通过这个办法似乎永远也变不成回文数的数,其中最小的数是196,它在被试验到5万步,达到21000位时,仍没有得到回文数。在前10万个自然数中,有5996个数像196这样似乎永远不能产生回文数,但至今没有人能证实或否定这一猜测。于是196问题,成了世界性的难题。

专门研究数的各种性质的数学分支,叫做数论,其中有许多既有趣又有困难的问题,科学家们正努力加以解决。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式