已知抛物线y^2=2px ,过点M(p,0)的直线与抛物线交于A、B两点,则向量OA*向量OB=? 5 1个回答 #热议# 普通体检能查出癌症吗? fnxnmn 2010-11-30 · TA获得超过5.9万个赞 知道大有可为答主 回答量:1.1万 采纳率:90% 帮助的人:6662万 我也去答题访问个人页 关注 展开全部 因为直线过点M(p,0)所以可设直线方程为x=my+p,(这样设可以避免讨论直线斜率不存在的情况)与抛物线方程y^2=2px联立消去x得:y²-2pmy-2p²=0,设A(x1,y1),B(x2,y2).则y1+y2=2pm,y1y2=-2p².向量OA*向量OB=x1x2+y1y2= (my1+p)( my2+p)=m²y1y2+pm(y1+y2)+ p²= m²(-2p²)+pm(2pm)+ p²= p². 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-06-21 A,B是抛物线y^2=2px(p>0)上的两点,满足向量OA与向量OB的积为0,求直线AB过定点 2022-05-27 A,B是抛物线y2=2px(p>0),并满足OA垂直OB,求证直线AB恒经过一个定点 2023-05-05 已知抛物线y^2=2过点M(p,0)的+直线与抛物线交于A,B两点,则OA和OB的乘积快速解法? 2010-11-20 已知抛物线y^2=4x,过点P(0,-2)的直线AB交抛物线于A,B两点 ①若向量OA·向量OB=4,则直线AB的方程为什么 13 2010-12-09 过抛物线y^2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若向量BC=-2向量BF,且 17 2011-12-11 A.B是抛物线Y^2=2PX(P>0)上的两点,且OA垂直OB,求证直线AB过定点。 23 2017-12-15 已知抛物线y2=2px(P>0),过点C(-2,0)的直线l交抛物线于A、B两点,坐标原点为O,OA向量*OB向量=12 26 2012-03-26 过抛物线y^2=2px(p>0)的焦点F的直线l交抛物线于A,B两点,交准线于点C,若向量CB=2向量BF,则直线AB斜率为 12 更多类似问题 > 为你推荐: