问几道数学的不等式问题
1.已知a<b<c且a+b+c=0,则b^2-4ab0(填>或<或≤或≥)2.函数y=log2[x^2/(x-1)]的值域为(2为底,x^2/(x-1)为真数)3.设a,...
1.已知a<b<c且a+b+c=0,则b^2-4ab 0(填>或<或≤或≥)
2.函数y=log2[x^2/(x-1)]的值域为 (2为底,x^2/(x-1)为真数)
3.设a,b∈R+,求证a^a·b^b≥a^b·b^a(作商法) 展开
2.函数y=log2[x^2/(x-1)]的值域为 (2为底,x^2/(x-1)为真数)
3.设a,b∈R+,求证a^a·b^b≥a^b·b^a(作商法) 展开
1个回答
展开全部
1、b^2-4ac=(-a-c)^2-4ac=a^2-2ac+c^2=(a-c)^2>0
2、x^2/(x-1)>0
x>1
设x-1=t>0,则x=1+t
y=log2[(t^2+2t+1)/t]=log2(t+1/t+2)≥log2(2+2)=2
值域为[2,+∞)
3、a^a·b^b/(a^b·b^a)
=(a/b)^a·(b/a)^b
=(a/b)^(a-b)
1)当a>b>0时,a/b>1,a-b>0
(a/b)^(a-b)>1
a^a·b^b>a^b·b^a
2)当a=b>0时,a/b=1,a-b=0
(a/b)^(a-b)=1
a^a·b^b=a^b·b^a
3)当0<a<b时,a/b<1,a-b<0
(a/b)^(a-b)>1
a^a·b^b>a^b·b^a
所以a^a·b^b≥a^b·b^a
2、x^2/(x-1)>0
x>1
设x-1=t>0,则x=1+t
y=log2[(t^2+2t+1)/t]=log2(t+1/t+2)≥log2(2+2)=2
值域为[2,+∞)
3、a^a·b^b/(a^b·b^a)
=(a/b)^a·(b/a)^b
=(a/b)^(a-b)
1)当a>b>0时,a/b>1,a-b>0
(a/b)^(a-b)>1
a^a·b^b>a^b·b^a
2)当a=b>0时,a/b=1,a-b=0
(a/b)^(a-b)=1
a^a·b^b=a^b·b^a
3)当0<a<b时,a/b<1,a-b<0
(a/b)^(a-b)>1
a^a·b^b>a^b·b^a
所以a^a·b^b≥a^b·b^a
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询