证明lim(n→∞){n-根号下n^2-n}=1/2

 我来答
同远千恬静
2020-04-24 · TA获得超过1217个赞
知道小有建树答主
回答量:1746
采纳率:100%
帮助的人:8.3万
展开全部
n-√(n^2-n)
=[n-√(n^2-n)] * [n+√(n^2-n)] / [n+√(n^2-n)]
而显然
[n-√(n^2-n)] * [n+√(n^2-n)]
=n^2 -(n^2-n)
=n
所以
原极限
=lim(n->∞) n/ [n+√(n^2-n)] 分子分母同时除以n
=lim(n->∞) 1/ [1+√(1- 1/n)]
显然n趋于无穷时,1/n趋于0,即分母1+√(1- 1/n)趋于2
故得到证明
原极限
=lim(n->∞) 1/ [1+√(1- 1/n)]
=1/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式