
2*2^2+3*2^3+4*2^4+...+(n+1)2^n+1求和(急!!)
1个回答
展开全部
通项: (n+1)2^(n+1) ,即等差数列n+1乘以等比数列2^(n+1),等差数列乘等比数列的通项的前n项和可以用错位相减法。
Tn=2×2^2+3×2^3+4×2^4+...+(n+1)×2^(n+1)①
2Tn=2×2^3+3×2^4+4×2^5+...+(n+1)×2^(n+2)② //乘以等比数列的公比
②-①得 Tn=-2×2^2-2^3-2^4-...-2^(n+1)+(n+1)×2^(n+2)=(n+1)×2^(n+2)-4-(2^2+2^3+...+2^(n+1))
=(n+1)×2^(n+2)-4-4×(2^n-1)/(2-1)
=(n+1)×2^(n+2)-4-2^(n+2)+4
=(n+1-1)×2^(n+2)
=n×2^(n+2)
Tn=2×2^2+3×2^3+4×2^4+...+(n+1)×2^(n+1)①
2Tn=2×2^3+3×2^4+4×2^5+...+(n+1)×2^(n+2)② //乘以等比数列的公比
②-①得 Tn=-2×2^2-2^3-2^4-...-2^(n+1)+(n+1)×2^(n+2)=(n+1)×2^(n+2)-4-(2^2+2^3+...+2^(n+1))
=(n+1)×2^(n+2)-4-4×(2^n-1)/(2-1)
=(n+1)×2^(n+2)-4-2^(n+2)+4
=(n+1-1)×2^(n+2)
=n×2^(n+2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询