在△ABC中,cosb=-5/13 cosC=4/5
在△ABC中,cosb=-5/13cosC=4/5求sinB、sinCsinA的值设△ABC的面积为33/2求边bc的长...
在△ABC中,cosb=-5/13 cosC=4/5 求sinB、sinC sinA 的值 设△ABC的面积 为33/2 求边b c 的长
展开
展开全部
1、解:
因为在△ABC中,A+B+C=π
所以,A=π-(B+C)
所以,sinA=sin[π-(B+C)]=sin(B+C)
因为cosB=-13分之5,cosC=0.8
所以,∠B为钝角,∠C为锐角。
所以,sinB>0,sinC>0
所以,
sinB=根号[1-(cosB)^2]=13分之12
sinC=根号[1-(cosC)^2]=0.6
所以,
sin(B+C)
=sinBcosC+sinCcosB
=(13分之12)×0.8-(13分之5)×0.6
所以,sin(B+C)=13分之6.6
即sinA=65分之33
2、由正弦定理,得
BC÷sinA=AB÷sinC
所以,BC=(AB×sinA)÷sinC
所以,BC=(13分之11)AB
因为△ABC的面积=0.5×BC×AB×sinB=2分之33
所以,13分之6×BC×AB=2分之33
因为BC=(13分之11)AB
所以,AB=6.5
即BC=5.5
因为在△ABC中,A+B+C=π
所以,A=π-(B+C)
所以,sinA=sin[π-(B+C)]=sin(B+C)
因为cosB=-13分之5,cosC=0.8
所以,∠B为钝角,∠C为锐角。
所以,sinB>0,sinC>0
所以,
sinB=根号[1-(cosB)^2]=13分之12
sinC=根号[1-(cosC)^2]=0.6
所以,
sin(B+C)
=sinBcosC+sinCcosB
=(13分之12)×0.8-(13分之5)×0.6
所以,sin(B+C)=13分之6.6
即sinA=65分之33
2、由正弦定理,得
BC÷sinA=AB÷sinC
所以,BC=(AB×sinA)÷sinC
所以,BC=(13分之11)AB
因为△ABC的面积=0.5×BC×AB×sinB=2分之33
所以,13分之6×BC×AB=2分之33
因为BC=(13分之11)AB
所以,AB=6.5
即BC=5.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询