X分之1加上X,X趋于无穷大或0时,极限为什么不是:0+无穷大=无穷大? 5
1个回答
展开全部
极限是e
x趋于无穷大时,
lim(1+1/x)∧x=e lim^xln(1+1/x)
令t=1/x, t->0
=e lim^1/tln(1+t)=e^1=e
扩展资料
极限的性质:
1、唯一性:存在即唯一
关于唯一性,需要明确x趋向于无穷,意味着x趋向于正无穷并且x趋向于负无穷;同理,x→xo,意味着x趋向于xo正且趋向于x0负。
比如:x趋向于无穷的时候,e^x的极限就不存在,因为x趋向于正无穷的时候e^x是无穷,x趋向于负无穷的时候e^x是0,根据极限存在的唯一性,所以这个极限不存在。
2、局部有界性:存在必有界
极限存在只是函数有界的充分条件,而非必要条件,即函数有界但函数极限不一定存在。
判别有界性的方法
(1)理论法:函数在闭区间上连续,则函数必有界。
(2)计算法:函数在开区间上连续且左右极限都存在,则函数有界。
(3)四则运算法:有限个有界函数的和、差、积必有界。
3、局部保号性:保持不等号的方向不变
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询