很难的数学题,求详细解答过程
在1和1,000,000之间,有多少整数不能被写为两个或两个以上连续正整数的和?这些数字都是什么?...
在1 和1,000,000之间,有多少整数不能被写为两个或两个以上连续正整数的和?这些数字都是什么?
展开
展开全部
一共20个,2^n(n=0,1,2,…,19)
至于证明,我还没想出来,等着吧。
结论肯定没错!
20多分钟过后,我证明了除了以上20个数之外,其他数都能被写为两个或两个以上连续正整数的和:
其他数必然含有大于1的奇约数,所以一定可以写成m(2n+1)的形式,其中m,n都是正整数
当m大于n时,(m-n)+(m-n+1)+(m-n+2)+...+m+(m+1)+(m+2)+...+(m+n)=[(m-n)+(m+n)](2n+1)/2=m(2n+1)
当m小于n+1时,(n+1-m)+(n+2-m)+...+n+(n+1)+...+(n+m)=[(n+1-m)+(n+m)]*2m/2=m(2n+1)
所以除了上面20个数,都可以被写为两个或两个以上连续正整数的和
至于这20个数为什么不行,你再等等
不用等了,这个简单:
n+(n+1)+(n+2)+...+(n+m)=[n+(n+m)](m+1)/2=(2n+m)(m+1)/2(其中,n,m都是正整数)
2n+m与m+1必然是一奇一偶,也就是说所有能被写为两个或两个以上连续正整数的和的数必然含有奇约数。所以2^n(n=1,2,...,19)这19个数不可以。另外一个就是“1”,这就太明显了。
按个规律,在所有正整数中,2^n(n=0,1,2,...)都不能被写为两个或两个以上连续正整数的和,其他的都可以!
至于证明,我还没想出来,等着吧。
结论肯定没错!
20多分钟过后,我证明了除了以上20个数之外,其他数都能被写为两个或两个以上连续正整数的和:
其他数必然含有大于1的奇约数,所以一定可以写成m(2n+1)的形式,其中m,n都是正整数
当m大于n时,(m-n)+(m-n+1)+(m-n+2)+...+m+(m+1)+(m+2)+...+(m+n)=[(m-n)+(m+n)](2n+1)/2=m(2n+1)
当m小于n+1时,(n+1-m)+(n+2-m)+...+n+(n+1)+...+(n+m)=[(n+1-m)+(n+m)]*2m/2=m(2n+1)
所以除了上面20个数,都可以被写为两个或两个以上连续正整数的和
至于这20个数为什么不行,你再等等
不用等了,这个简单:
n+(n+1)+(n+2)+...+(n+m)=[n+(n+m)](m+1)/2=(2n+m)(m+1)/2(其中,n,m都是正整数)
2n+m与m+1必然是一奇一偶,也就是说所有能被写为两个或两个以上连续正整数的和的数必然含有奇约数。所以2^n(n=1,2,...,19)这19个数不可以。另外一个就是“1”,这就太明显了。
按个规律,在所有正整数中,2^n(n=0,1,2,...)都不能被写为两个或两个以上连续正整数的和,其他的都可以!
2010-11-30
展开全部
一共有十四个!分别是:1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192!楼主,我是这样做的,先将一至二十的数字用连续整数和相加,发现满足二的N次方的数字都不能用连续正整数相加求得!最终得出结果
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
奇数个连续自然数和能被中间的奇数整除,偶数个连续和能被中间两项的和整除,
反之,能写成连续自然数和的数 也能表达为上两种形式
所以能写成连续自然数和的数必有奇数因数, 所以 2的n次方不能
反之,能写成连续自然数和的数 也能表达为上两种形式
所以能写成连续自然数和的数必有奇数因数, 所以 2的n次方不能
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
还要详细解答过程?额。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你先忙 我还有事 先走了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询