初等函数在定义域内一定连续吗?
3个回答
展开全部
不一定。
例如初等函数f(x)=1/x,这个函数的原函数F(x)=ln|x|+c(c是任意常数),在x=0点处就不连续。x=0点处没有定义。但是这种间断点是因为没有定义的间断点,属于定义域不连续导致的函数不连续,而在定义域内是连续的。
初等函数本身并不是连续函数,如f(x)=1/x这样初等函数也是有间断点x=0的。但是初等函数的间断点是因为定义域不连续导致的间断点。在定义域内部是不会存在间断点的。
连续函数的其他性质
1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。
2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。
3、连续函数的复合函数是连续的。
4、一个函数在某点连续的充要条件是它在该点左右都连续。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
2021-12-30
展开全部
初等函数在定义域内不一定连续。 初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用米迦勒之舞90的回答:
不一定。
例如初等函数f(x)=1/x,这个函数的原函数F(x)=ln|x|+c(c是任意常数),在x=0点处就不连续。x=0点处没有定义。但是这种间断点是因为没有定义的间断点,属于定义域不连续导致的函数不连续,而在定义域内是连续的。
初等函数本身并不是连续函数,如f(x)=1/x这样初等函数也是有间断点x=0的。但是初等函数的间断点是因为定义域不连续导致的间断点。在定义域内部是不会存在间断点的。
连续函数的其他性质
1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。
2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。
3、连续函数的复合函数是连续的。
4、一个函数在某点连续的充要条件是它在该点左右都连续。
不一定。
例如初等函数f(x)=1/x,这个函数的原函数F(x)=ln|x|+c(c是任意常数),在x=0点处就不连续。x=0点处没有定义。但是这种间断点是因为没有定义的间断点,属于定义域不连续导致的函数不连续,而在定义域内是连续的。
初等函数本身并不是连续函数,如f(x)=1/x这样初等函数也是有间断点x=0的。但是初等函数的间断点是因为定义域不连续导致的间断点。在定义域内部是不会存在间断点的。
连续函数的其他性质
1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。
2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。
3、连续函数的复合函数是连续的。
4、一个函数在某点连续的充要条件是它在该点左右都连续。
展开全部
这道题的答案是正确的,因为在它的定义域内。这个函数,这个初等函数一定是连续的,他举的这个函数x分之一。X等于零,这个点就不在它的定义域内。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询