若复数z满足z^2+1=0,则z^1+z^2+z^3+...+z^2009=
1个回答
展开全部
由z^2+1=0,所以z^2=-1
方法一:z^2010=1,所以z^1+z^2+z^3+...+z^2009=(z-z^2010)/(1-z)=(z+1)/(1-z)=z=i或-i
方法二:z^2=-1,z^3=-z,z^4=1,所以z^(4n+1)=z,即以4为周期T
又z^1+z^2+z^3+z^4=0,所以
z^1+z^2+z^3+...+z^2009=502*0+z^2009=z=i或-i
方法一:z^2010=1,所以z^1+z^2+z^3+...+z^2009=(z-z^2010)/(1-z)=(z+1)/(1-z)=z=i或-i
方法二:z^2=-1,z^3=-z,z^4=1,所以z^(4n+1)=z,即以4为周期T
又z^1+z^2+z^3+z^4=0,所以
z^1+z^2+z^3+...+z^2009=502*0+z^2009=z=i或-i
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询