z=0是函数1/z^3的2阶极点吗

 我来答
百度网友2d532ce
2023-01-15 · 超过388用户采纳过TA的回答
知道小有建树答主
回答量:2352
采纳率:98%
帮助的人:54.5万
展开全部
如果lim(z→a)[(z-a)^m]f(z)=一个有限值(非0)
那么a是f(z)的m阶极点
用级数展开也可以

lim(z→0)(z-0)^3*[1/(sinz-z)]
=lim(z→0)3z^2/(cosz-1)
=lim(z→0)6z/(-sinz)
=-6
[级数展开sinz=z-z^3/3!+...
可见z是3阶极点]

lim(z→0)(z-0)^2*[(e^z-1)/z^3]
=lim(z→0)(e^z-1)/z
=lim(z→0)e^z/1
=1
[级数展开e^z=1+z+z^2/2+z^3/3...
可见z是2阶极点]

lim(z→0)(z-0)*[sinz/z^2]
=lim(z→0)sinz/z
=1
[级数展开sinz=z-z^3/3!+...
可见z是1阶极点]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式