已知tana tanb是方程x2+6x+7=0的两根 求证 sin(a+b)=cos(a+b)
1个回答
展开全部
根据题意:
tana+tanb=-6
tana*tanb=7.
tan(a+b)=(tana+tanb)/(1-tana*tanb)
=-6/(1-7)=1;
即:tan(a+b)=1;
所以:sin(a+b)=cos(a+b).
tana+tanb=-6
tana*tanb=7.
tan(a+b)=(tana+tanb)/(1-tana*tanb)
=-6/(1-7)=1;
即:tan(a+b)=1;
所以:sin(a+b)=cos(a+b).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询